

EURISOL targetry challenges

EURISOL shall deliver beams of 3 orders of magnitude higher intensity than 1999 yields.

- Design of "oven + heat-transport system" target containers dissipating a direct GeV p-beam dc-power of > 100 kW to produce spallation generated RIBs.
- Computational optimization of the wall material and target geometry of a chosen element from a "target vessel, transfer line & ion-source" system to improve the release efficiency.
- Improve ion-source efficiencies and beam purity.
- Design high power density spallation n-sources (10 MW/I)
- Design actinide targets intercepting efficiently the neutrons generated by high power density n- sources.

Introduction to ISOL RIB facilities

Isotope Separation On Line

- ISOLDE
- TRIUMF

ISOLDE target handling.

(1 GeV ~ 200 g/cm²)

ISOLDE Front-End Technical design

Strategy: 2 FE + 1spare Production needs: 1 FE/3years "Minor" repair after 1 year of cooling

$6 \le Z \le 92$ Target materials

25 Elements, ~ 40 compounds: Target thickness: 4-220 g/cm² Cross section $\sigma(E_{proton})$

Oxides, Carbides Molten metals, - salts Thin foils, Powders

Beam power for ISOL-RIB production: Liquids (1-2 kW), Solids (5 kW), Ta, Nb, SiC (20-30 kW @ TRIUMF)

Chemically selective RIB Ion-sources

			Surface ion-source														
		Negative ion-sources															
		FEBIAD ion-sources															
		RILIS, Elements available 2004															
						ECR 1+											
1												2					
н											Не						
3	4 Bo					5 P	⁶	7 N	⁸	9 E	10 No						
LI	7.0%																
11	12		13 14 15 16 17														
Na	Mg											AI	Si	Р	S	CI	Ar
19	9.8%	21	22	23	24	25	31	32	33	34	35	36					
κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
						19.2%			0.8%	6.6%	4.9%						
37 Ph	38 Sr	39 V	40 7 r	41 Nh	42 Mo	43 To	44 Du	45 Ph	46 Pd	47 A a	48 Cd	49 In	50 Sn	51 Sh	52 To	53	54 X o
ΝIJ	31		21		NIO	IC	пu	КП	Fu	Ag	8.8%		8.5%	30	IE		Ve
55					74	75	76	77	78	79	80	81	82	83	84	85	86
	56		72	73	74	75											
Cs	56 Ba	La	72 Hf	73 Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cs	56 Ba	La	72 Hf	73 Ta	/4 W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cs 87 Fr	56 Ba 88 Ba	La Ac	72 Hf 104	73 Ta 105	74 W 106	73 Re 107	Os	Ir 109	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn

	57		58		59		60	6	61	6	62	6	63	64		65		66	67	68	69	70	71
La		Ce		Pr		Nd		Pm		Sm		Eu		Gd	Tb		Dy		Но	Er	Tm	Yb	Lu
																					2.0%	12.5%	
	89		90		91		92	ç	93	g	94	9	95	96		97		98	99	100	101	102	103
Ac		Th		Ра		U		Np		Pu		Am		Cm	Bk		Cf		Es	Fm	Md	No	Lw
								-															

Ion-sources efficiencies

Release efficiency

effusion, diffusion

Half lives

ISOLDE yields: ~750 RIBs produced (1963-2004)

EURISOL -- EURISOL DS

- 4 years EU project published end 2003;
- Conclusion: RIB yields enhancement predicted (vs. 1999 data) by factors of 2 to 4 orders of magnitude !
- 2005 EURISOL-DS to address the remaining technological challenges

EURISOL target stations

– 4 MW Hg-jet

Top view

100 kw direct irradiation

- Thickness, Heat transport, dose rate
- Diffusion and Effusion delays
- Chemical nature of the target: 6
- Oven Materials: 4
- Elements to be produced: > 70
- Transfer line: 4
 - Drift fields
- Ion source: 5
 - Stabilisation of the production (Std. eff., life time, reproduce on-line the best off-line results).
 - Radiation Hardness.
 - Selectivity vs. isobars.
- Maintenance, vacuum vessel, pumps, radioactive Waste handling.

One Standard Front-end ?

TEST cases 100 kW direct

- Targets
 - Actinide target (carbide)
 - UC₂+C, ThC₂+C
 - W-converter, Moderator & Reflector
 - Metal foil target (solid)
 - Ta, Nb
 - Oxide powder of fiber
 - BeO + converter
 - Insulating materials low dE/dx
 - Low density
 - Molten metal (Liquid)
 - Vapor condensation
- Ion-sources
 - Mono ECR
 - RILIS, Surface
 - FEBIAD
- Elements
 - He, Li, Be, Hg ...

4 Targets4 Ion-sources1 Front-end

Synergy with β -beam

Spin off is expected on:

- Similar target materials
- Elements from the same chemical group

SiC Triumf

ISOLDE Physics Seminar, 15 Feb. 2005

Thomas AGNE (CERN/UdS)

Confinement of the activity, RIB-selection

Mass separator

Confinement of radioactve gases (cold trap)

Target station Chemically selective ion-source (RILIS)

Target plugs

Actinide target

- Cylindrical, donut or C-shaped optimized vs. n-flux ... and target exchange.
- Target material: Test of the release properties of high density UC₂ vs. UC₂+C powder
- Thermal equilibrium issue: the target is kept at 2200°C while its inner or close by placed Hg-n-spallation source Has to evacuate ~1 MW.

Synergy with SNS, SPIRAL II and SPES Competitive method: high flux reactors ²³⁵U-fission at MAAF 1 Target ? 5 Ion-sources 1 Front-end

p- or n-induced fission

Spallation n-sources

- Cooled Ta or W-rods
- Hg stream or confined Hg-jet

- Engineering study of the thermal hydraulics, fluid dynamics and construction materials of a window free liquid-metal converter.

- Study of an innovative waste management in the liquid Hg-loop e.g. by means of Hg distillation.

- Engineering design and construction of a functional Hg-loop.

- Off-line testing and validation of the thermal hydraulics and fluid dynamics.

- Detailed planning and proposal for subsequent in-beam test in collaboration with other Hg target users.

- Engineering design of the entire target station and its handling method

ISOLDE n-spallation source: Ta(W)-rod mounted below the UC target (before irradiation)

The yields of very n-rich isotopes obtained via neutron induced fission of Th or U are close to those of high energy protons. Further developments: Geometrical optimum and n-reflectors J. Lettry CERN AB-ATB 10 March 05

Kr, Xe and Cs yields, Ta-W EURISOL converter

24

Conclusion

- The EURISOL-DS-targetry group proposes:
 - 4 test cases to define the front-end of the 100 kW target stations (T3).
 - Investigation of a spallation n-source based on Hg loop (4 MW) (T2) and cooled solids (<1 MW) (T4).
 - Compare yields of high-densitient of actinide carbides (T4).
- Decision on EU-funding of the

EU-funding 890 kEuros

T3 – direct target

